
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

CScADS Summer
Workshop 7/26/12	

“I have had my results for a long time, but I do not yet
know how I am to arrive at them.”	

	

–Carl Friedrich Gauss, 1777-1855

 Visualization and Data Analysis Tools	

Morse-Smale
Complex of

combustion in the
presence of a cross

flow (image
courtesy Attila

Gyulassy)	

2	

Executive Summary	

- Postprocessing tools	

- Interactive (+)	

- Full-featured (+)	

- Scalability limited by data size (-)	

- High latency results (-)	

- Examples: R, ParaView, VisIt	

- Run-time tools	

- Coprocessing	

- In Situ	

- Direct data access (+)	

- Low latency results (+)	

- Interaction more difficult (-)	

- Limited features (-)	

- Examples: ADIOS, GLEAN, DIY	

3	

Postprocessing Tools	

Postprocessing Scientific Data Analysis in HPC Environments���

4	

Examples:	

2D statistical graphics using R	

3D scientific visualization using ParaView	

Scientific visualization using VisIt	

5	

Statistical Graphics: 	

http://r-project.org/

- S (1976) John Chambers, Bell
Labs 	

- R (1993) R. Gentleman and R.
Ihaka, Auckland	

- ~250K – 1M users	

- Steep learning curve (3000-
page manual)	

- Merges statistics with plotting	

- Powerful plotting features	

Data Pipeline Tools���

Data analysis as a series of transformations	

-Source, filters, and sink	

-VTK (Schroeder, Martin, Lorensen 1993)	

-Many tools on top of VTK: ParaView, VisIt, VisTrails	

-Code reuse, portability, standardization	

6	

7	

3D & 4D Scientific Visualization:	

- Started in 2000 with Kitware and LANL, later included SNL and ARL	

- VTK engine	

- Qt interface	

- Contacts: Ken Moreland (SNL), Berk Geveci (Kitware)	

- Tutorials at SC, SciDAC, elsewhere	

 http://www.itk.org/Wiki/ParaView_2.X_documentation_and_tutorials	

http://www.paraview.org	

0.5 billion-cell
weather
visualization
courtesy Ken
Moreland	

8	

Advanced ParaView: Client-Server Mode	

On Eureka:	

-Add a few one-time items to .softenvrc, .bashrc	

-Grab nodes in interactive mode for a time: 	

qsubi -n 4 –t 60
- Start the pvserver: 	

mpirun -np 4 -machinefile $COBALT_NODEFILE /soft/apps/
paraview-3.4.0-mpich-mx/bin/pvserver

On local machine:	

-Setup a tunnel:	

ssh -NL 11111:vs37:11111 username@eureka.alcf.anl.gov
-Start ParaView, configure connection, connect	

-Beware to have matched ParaView versions between client and server	

http://paraview.org/paraview/resources/software.html	

Eureka setup instructions at 	

https://wiki.alcf.anl.gov/index.php/Paraview_on_the_Data_Analytics_Cluster	

9	

3D & 4D Scientific Visualization:	

- Started in 2000 at LLNL as an ASCI-funded program	

- VTK-like engine	

- Qt interface	

- Contacts: Hank Childs (BNL, UC-Davis), Jeremy Meredith (ORNL)	

- Tutorials at SC, SciDAC, elsewhere	

 https://wci.llnl.gov/codes/visit/1.4.1/VisualizationWithVisIt.pdf	

https://wci.llnl.gov/codes/visit/
home.html	

Rayleigh-Taylor
Instability
visualization
courtesy Hank
Childs	

10	

Advanced VisIt: Scripting Mode	

OpenDatabase("localhost:/filename", 0)	

AddPlot("Pseudocolor", ”velx", 1, 1)	

AddOperator("Box", 1)	

AddOperator("Resample", 1)	

SetActivePlots(0)	

SetActivePlots(0)	

BoxAtts = BoxAttributes()	

BoxAtts.amount = BoxAtts.Some	

BoxAtts.minx = -0.4	

BoxAtts.maxx = 0.4	

BoxAtts.miny = -0.4	

BoxAtts.maxy = 0.4	

BoxAtts.minz = -0.4	

BoxAtts.maxz = 0.4	

SetOperatorOptions(BoxAtts, 1)	

DrawPlots()	

ExportDBAtts = ExportDBAttributes()	

ExportDBAtts.db_type = "BOV"	

ExportDBAtts.filename = "0.x"	

ExportDBAtts.dirname = "."	

ExportDBAtts.variables = ”velx"	

ExportDBAtts.opts.types = ()	

ExportDatabase(ExportDBAtts)	

quit()	

Save in script.py.	

Run with:	

visit –cli –nowin –s script.py	

Capture the script with Controls | Command
and record	

11	

What We Learned So Far	

- No one tool can do it all	

- Tools have steep learning curves, may require expert
assistance	

- Competing tools are often quite similar, choices often are
not that critical	

- There will always be a role for postprocessing tools	

12	

Run-time Tools	

Run-time Scientific Data Analysis in HPC Environments���

13	

Examples:	

GLEAN, ADIOS,	

ParaView Coprocessing Library	

Examples:	

GLEAN, ADIOS,	

DIY	

R, 	

ParaView, VisIt	

Analyze	

The Data-Intensive Nature of Computing and Analysis	

Machine FLOPS
(Pflop/s)

Storage B/W
(GB/s)

Bytes comp.
per byte
stored

LLNL BG/L 0.6 43 O(10 3)

Jaguar XT4 0.3 42 O(10 3)
Intrepid BG/

P 0.6 50 O(10 3)

Roadrunner 1.0 50 O(10 4)

Jaguar XT5 1.4 42 O(10 4)

Normalized Storage / Compute Metrics	

-In 2001, bytes computed per bytes
stored was approximately 50. 	

Refs: John May, 2001, Murphy et al. ICS’05.	

The relative percentage of time in the stages of
volume rendering as a function of system size.
Large visualization is dominated by data
movement: I/O and communication.	

14	

“Analysis and visualization will be limiting factors in gaining insight from exascale data.”	

–Dongarra et al., International Exascale Software Project Draft Road Map, 2009.

Scalable Analysis & Visualization: The
Data Parallel Approach���

Treat analysis as any other parallel computation	

-Decompose the domain	

-Assign to processors	

-Combine local and global operations	

-Use parallel I/O, MPI, other programming models	

-Balance load, minimize communication	

-Measure strong, weak scaling, efficiency	

“The combination of massive scale and complexity is such that high performance computers
will be needed to analyze data, as well as to generate it through modeling and simulation.” 	

–Lucy Nowell, Scientific Data Management and Analysis at Extreme Scale, Office of Science Program
Announcement LAB 10-256, 2010. 15	

Integrate with simulation	

Tackling the Data-Intensive Part of Data Analysis���

DIY: help the user write own data-parallel analysis algorithms. ���

16	

Main ideas and Objectives 	

-Large-scale parallel analysis (visual and
numerical) on HPC machines	

-Scientists, visualization researchers,
tool builders	

-In situ, coprocessing, postprocessing	

-Data-parallel problem decomposition	

-Scalable data movement algorithms	

Benefits	

-Researchers can focus on their own
work, not on parallel infrastructure	

-Analysis applications can be custom	

-Reuse core components and algorithms
for performance and productivity	

Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics

Morse-Smale complex of combustion Voronoi tessellation of cosmology

Data Analysis Comes in Many Flavors	

Separate Analysis Ops from Data Ops	

You do this yourself	

Can use serial libraries such as OSUFlow, Qhull, VTK
(don’t have to start from scratch)

DIY handles this

Analysis Application Application
Data Model

Analysis
Data Model

Analysis
Algorithm

Particle
Tracing

CFD Unstructured
Mesh

Particles Numerical
Integration

Information
Entropy

Astrophysics AMR Histograms Convolution

Morse-Smale
Complex

Combustion Structured
Grid

Complexes Graph
Simplification

Computational
Geometry

Cosmology Particles Tessellations Voronoi

Communica
tion

Additional

Nearest
neighbor

File I/O,
Domain
decompositi
on, process
assignment,
utilities

Global
reduction,
nearest
neighbor

Global
reduction

Nearest
neighbor

Group Data Items Into Blocks	

19	

The block is DIY’s basic unit of data. Original dataset is decomposed into generic
subsets called blocks, and associated analysis items live in the same blocks. Blocks
contain one or more instances of the data type described earlier.	

!"#$%"$#&'()#*' +,-()#*' ./0"#$%"$#&'(,&01

Block ≠ Process	

20	

All data movement operations are per block; blocks exchange information with
each other using DIY’s communication algorithms. DIY manages and optimizes
exchange between processes based on the process assignment. This allows for
flexible process assignment as well as easy debugging.	

!"#$%&'(('()"#$%&'(('(*"#$%&'((

Group Blocks into Neighborhoods	

21	

-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and
knowledge of other blocks (not master-
slave global knowledge)	

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

!"#$%
&'(

!"#$%
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

333

!"#$%
&'(

!"#$%
)*+),+-

333

333

!"#$%
&'(

!"#$%
)*+),+-

333

"'(1415

"'(1416

"'(141
,!"#$%-1716

&'(141&"#!8"1!"#$%1'(),+'9'$8+'#,
"'(141"#$8"1!"#$%1'(),+'9'$8+'#,
2'(1412/#$)--1'(),+'9'$8+'#,

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

Provide Different Neighborhood Communication Patterns	

22	

DIY provides point to point and different varieties of collectives within a neighborhood via
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	

!"#$%&'()()$*+),$-+./
!"#$%&'()()$*+),$,012./

!"#$%&'()()$*+),$033./ !"#$%&'()()$*+),$4035./

!"#$%&'()()$*+),033&)06./
!"#$%&'()()$*+),4035&)06./

7(--86+95869:60-068(&;9&)*<4=8619
.6)-)0+*&<9=8(&;06>9?8&;*+*8&1/

Make Global and Neighborhood Communication
Fast and Easy	

23	

DIY provides 3 efficient scalable communication algorithms on top of MPI. May be
used in any combination.	

Analysis Communication

Particle Tracing Nearest neighbor

Global Information
Entropy

Merge-based reduction

Point-wise Information
Entropy

Nearest neighbor

Morse-Smale Complex Merge-based reduction

Computational Geometry Nearest neighbor

Region growing Nearest neighbor

Sort-last rendering Swap-based reduction

Factors to consider when
selecting communication
algorithm:	

-associativity	

-number of iterations	

-data size vs. memory size	

-homogeneity of data	

3 Communication Patterns	

24	

!"#$%&'
' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&(

!12#342

' () * + , - .

/ 0 (' ((() (* (+ (,

' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&'
(&)&* ' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&+
(&)&,

!34#564

' + , - * . / 0

1 2 +' ++ +, +- +* +.

' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&'
(&)&*

' + , - * . / 0

1 2 +' ++ +, +- +* +.

1 +' +, +*

1 +,

!"#$%&+
(&)&,

!34#564

Nearest neighbor	

 Swap-based
reduction	

Merge-based
reduction	

Data Input	

25	

Multiblock and Multifile I/O	

-Application-level two-phase I/O	

-Reads raw, netCDF, HDF5 (future)	

-Read requests sorted and aggregated into large contiguous accesses	

-Data redistributed to processes after reading	

-Single and multi block/file domains	

-75% of IOR benchmark on actual scientific data	

Input algorithm	

Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘11

Analysis Output	

26	

Features	

Binary	

General header/data blocks	

Footer with indices	

Application assigns semantic value to DIY blocks	

Written efficiently in parallel	

Parallel block-wise compression	

Output file format	

!"#$"%
&#'#

()#*+,-,
&#'# ././. ././.01,' 01,' 01,'20'3*4,

5/)

3*064/7 3*064/8 3*064/)/9/8 :00'"%

!"#$"%
&#'#

()#*+,-,
&#'#

!"#$"%
&#'#

()#*+,-,
&#'#

Implement Data Operations in a Library with a small l	

27	

Library	

Written in C++	

C bindings, future Fortran bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	

DIY usage and library organization	

Features	

Parallel I/O to/from storage	

-MPI-IO, BIL	

Domain decomposition	

-Decompose domain	

-Describe existing decomposition	

Network communication	

-Global reduction (2 flavors)	

-Local nearest neighbor	

!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

Interactive Voronoi Exploration in
ParaView	

-ParaView reader for Voronoi output
from previous slide	

-Plugin as part of suite of cosmo tools
in ParaView	

-Threshold filter	

-Connected component labeling	

-Analysis of connected components	

Work With Postprocessing Tools	

28	

29	

Run-time Tools Recap	

- In situ and coprocessing (terms can be confusing and often
used differently)	

- We covered in situ analysis with a library called DIY	

- Perform some amount of analysis in the simulation and
write those results for later postprocessing	

Applications of Run-time Analysis	

30	

Computational Geometry for Cosmology	

-Cosmology N-body simulations produce a
sparse particle field	

-Can cluster to find halos	

-Finding voids more difficult	

-Dense geometric field is useful

(tessellation)	

-Voronoi tessellation is ideal because it

adapts automatically to particle
distribution and assumes little about
cell size and shape	

-Idea: Generate Voronoi cells from
particle data in situ, threshold filter, and
store for later postprocessing analysis.	

Peterka et al., Meshing the Universe: Identifying Voids in Cosmological Simulations Through In Situ Parallel
Voronoi Tessellation, Submitted to LDAV’12

Parallel Voronoi Tessellation	

Thresholding cell volume to reveal cosmological voids	

Particles Processes Total Time (s) Simulation
Time (s)

Tessellation
Time (s)

512^3 2048 3852 3684 167

4192 2008 1918 89

8096 1784 1722 62

16384 1406 1344 61

Subset of strong and weak
scaling test results shows
good scalability and relatively
small fraction of total run
time for in situ analysis	

33	

Parallel Time-Varying Flow Analysis	

Approach	

-In core / out of core processing of time
steps	

-Simple load balancing (multiblock
assignment, early particle termination)	

-Adjustable synchronization
communication 	

Collaboration with the Ohio State University and University of Tennessee Knoxville

Algorithm	

for (epochs) {	

 read my process’ data blocks	

 for (rounds) {	

 for (my blocks) { 	

 advect particles	

 }	

 exchange particles	

 } 	

}	

Pathline tracing of 32 time-steps of
combustion in the presence of a cross-flow	

Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘11

Parallel Particle Tracing	

34	

Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	

35	

Parallel Information-Theoretic Analysis	

Objective	

-Decide what data are the most essential for
analysis 	

-Minimize the information losses and maximize the
quality of analysis	

-Steer the analysis of data based on information
saliency	

Information-theoretic approach	

-Quantify Information content based on Shannon’s
entropy	

-Use this model to design new analysis data
structures and algorithms	

Collaboration with the Ohio State University and New York University Polytechnic Institute

!"#$%&'()$"*
(+,$%,()-.
'/0$%)(+&1

2,34555
678.&$9,/

:,-()$".$#.)"#$%&'()$"
,"(%$;<.#),/9

=%,'1.$#.+)0+.)"#$%&'()$"
,"(%$;<**(>%?>/,"(.
%,0)$"1.)".$%)0)"'/.

9'('**'%,.(+,.)"(,%,1()"0
%,0)$"1.)".1)&>/'()"0.

-$$/'"(.#/$@.)".'.">-/,'%.
%,'-($%A

Shannon’s Entropy 	

The average amount of information
expressed by the random variable is	

Information Entropy Performance and Scalability	

36	

Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.	

37	

Parallel Topological Analysis	

- Transform discrete scalar field into Morse-Smale complex	

-Nodes are minima, maxima, saddle points of scalar values	

- Arcs represent constant-sign gradient flow	

- Used to quickly see topological structure	

Two levels of simplification of
the Morse-Smale complex for jet
mixture fraction.	

Collaboration with SCI Institute, University of Utah

Example of computing discrete gradient and Morse-Smale Complex	

1	

 2	

3	

 4	

Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, Submitted to IPDPS ‘12

Morse-Smale Complex Performance and Scalability	

38	

Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	

Summary	

-Consider data and data movement as first-class citizens	

-Tools needed both for run-time as well as postprocessing analysis	

-Analysis is any sequence of operations on data that hopefully
reduces its size and/or improves its understandability	

-Much more work to be done!	

39	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

“The purpose of computing is insight, not numbers.”	

	

–Richard Hamming, 1962

CScADS Summer
Workshop 7/26/12	

Acknowledgments:	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	

http://www.mcs.anl.gov/~tpeterka/
software.html	

https://svn.mcs.anl.gov/repos/diy/trunk	

